手机浏览器扫描二维码访问
余教授的暗示很明显了,这道求婚题大概率会出现在明天的数学试卷上。
任课教授暗示的题目,那一定是很重要的题目,重要程度值得通宵研习,并找到其中隐藏的真正奥妙。
夏路的晚餐在食堂解决,白米饭,大馒头,红烧肉,煮鸡蛋,一碟青菜,荤素搭配,营养均衡,量大管饱。
吃饭的时候,夏路一直在思考,为什么是第二个女生?
推导出这个结果,需要精确的用到哪些数学理论?
明天的数学期末考试试卷上,极有可能出现这么一道题目:“假设一个有结婚计划的男人在未来7年内遇见了7个女孩子……请问他向第几个女孩子求婚的成功率最高?为什么?”
最关键的问题是“为什么”,即第二个女生为正确答案的理论支撑。
“这个问题,已经超越了我所掌握的数学知识范畴……”
夏路冥思苦想,为什么设定7年、7个妹子,为什么第二个妹子才是最适合结婚的那个人?
2除以7等于0.286。
为什么是0.286而不是0.618?
0.286究竟暗示着哪个数学理论?
为什么为什么这到底是为什么呢?
等等!
余教授刚才在不经意间说了句话。
“过去的就让她过去吧,但过去的依然保有数学意义。”
对,就是这句话!
再回顾一遍余教授的题设:“假设夏路你之前谈过一个女朋友,你在未来的7年内陆续交往了7个女生……”
“啊,我明白了!”
夏路恍然大悟,因为太过激动,他竟将鸡蛋捏碎。
过去的依然保有数学意义!
必须考虑那位最先假设的前女友。
所以分母不是7,而是8!
故而7个妹子中的第二个,是8个妹子中的第三个!
3除以8等于0.375。
0.375并没有什么数学意义,至少在夏路目前所掌握的数学知识里,他不认为0.375是个很吊的数字。
但是,和0.375比较接近的0.368则具有严格的数学意义。
“有趣,真的是有趣啊!”
夏路快速解决掉剩下的食物,然后来到图书馆。
0.368比三分之一多那么一点点,夏路想到了贝叶斯定理。
对,就是贝叶斯定理。
根据贝叶斯定理,在你所交往的8个妹子中,“比三分之一多一点点”的那个妹子,最有可能成为你的新娘。
3除以8是最接近0.368的结果,所以8个妹子中的第三个,是正确答案。
以上推测来自夏路单方面的构思,他对贝叶斯定理及整套概率体系的了解,还处于比较浅薄的阶段。
余枫教授名义上是弘毅学堂理科试验班大一学生的高数课老师,但他的教学内容有一些已超越了高数大纲。
试验班跟普通班当然是不一样的,超纲很正常。
夏路有一点点印象,在这个月初的一次与余教授的师生茶话会中,余教授谈到了贝叶斯定理。
诸天万界帝皇 我的绝色上司老婆 都市最强整蛊师 诸天最强天师 最强神话之王 暗月纪 横扫大千 神圣罗马帝国 我当皮神那些年 提督的星际争霸 武神丹帝 我的女孩你惹不起 武侠之无尽吞噬 我在过去逆转未来 诸天之救世主 挂机之小富即安 吞天弑地传 重生师道无疆 特种兵之基因复制系统 我的专属梦境游戏
少年附身韦小宝,和康熙做兄弟,唬弄皇帝有一手绝色美女尽收,色遍天下无敌手!睿智独立,诱惑惊艳的蓝色妖姬苏荃花中带刺刺中有花的火红玫瑰方怡温柔清新纯洁可人的水仙花沐剑屏空谷幽香,善解人意的解语花双儿倾国倾城,美丽绝伦的花中之王牡丹阿珂诱惑惊艳美艳毒辣的罂粟花建宁空灵纯洁娇艳精怪的山涧兰花曾柔...
师父死了,留下美艳师娘,一堆的人打主意,李福根要怎么才能保住师娘呢?...
一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...
前世孤苦一生,今世重生成兽,为何上天总是这样的捉弄!为何上天总是那样的不公!他不服,不服那命运的不公。自创妖修之法,将魔狮一族发展成为能够抗衡巨龙的麒麟一族,成就一代麒麟圣祖的威名。...
从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...
生长于孤儿院的少年刘翰和几女探险时偶得怪果奇蛇致使身体发生异变与众女合体并习得绝世武功和高超的医术为救人与本地黑帮发生冲突得贵人相助将其剿灭因而得罪日本黑道。参加中学生风采大赛获得保送大学机会。上大学时接受军方秘训后又有日本黑龙会追杀其消灭全部杀手后又参加了央视的星光大道和青歌大赛并取得非凡成绩。即赴台探亲帮助马当选总统世界巡演时与东突遭遇和达赖辩论发现超市支持藏独向世界揭露日本称霸全球的野心为此获得诺贝尔和平奖而在颁奖仪式上其却拒绝领奖主人公奇遇不断出现艳遇连绵不...